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ABSTRACT

By assuming only cross#hg‘symmétr9 and analyticity in
tﬁe 3 body scattering amplitude, we prove that the
ratio of the inclusive cross section for the  process
‘a+b” , C+X to the semi-inclusive cross section for the
‘process a+b';'E+XS, ‘where Xg is any subset of X, is a
function of MZ, the missinq mass squared of X(and Xé)
only. We show that the ratio does not depend on s or
t. Several related lemmas are also proved.  The
results are valid at all ‘energies and for all

interactions possessing analyticity and crossing

symmetryv.
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Consider the scattering process described by Figure 1(a).
The cross section :for the scattering orocess is a function

of the :variables sz,s and t and may 'be written as

B(MZ,8.t) = K z<abc|R'|X><X|R|abc> (1)
X
where R is the reaction matrix. Jabc> is a ket denoting the
initial state and |X> is a ket denoting the allowed set of
final stafes abc can scatter into. K contains -kinematical
flux factors aﬁd'will nét concern 'us further. .We prefer to
susé the discrete summation notation rather than phase‘ space
integration fo; the sake of clarity. In equation.(lﬁ,
I |X><X| is an operator acting on the Hilbert space of |abc>,
,Since |x>‘contains only those states with effective mass M,
the operator is not unity. Let -us note that owing to

2

Lorentz invariance, S is a function of M° onlv and not of s

and t.-

The ‘ugsual laws of operator algebra applvy to 8. In
particular, multiplication of S 'by a scalar vields another

orerator.

The cross section for abc scattering into a subset X, of X

may ‘be written as



C(M%.s,t) =X 3 <abc|RT|Xs><XS|R|abc> (2)

Xs

-

Xg is any subset of X, e.g. X_ has a fixed multinlicity °,

X, does not contain anv :baryons etc. £|X ><X | is another

overator which we will denote 'by Sl’ S1 is a function of’M2
only.‘ From equations 1 and 2/, we get
g(MZ,s,t)z<abc;Rf|X><X|R|abc> = g(Mz,s,t)z<abc|R+|X5><XS|R|abc
‘B(Mz,s,t) : C(MZ.S,t)
= g5, t) (3)

where g is any single ‘valued., dififerentiable, continuous

function of M%,s,t. ‘Equation 3 estaglisheS'a correspondence

| B g(M4.s,t)s |
betyeen the operators ‘——E‘—“" - ' and .
g'({vzr,s,t)sl o ' B(MY,g,.t) ‘

N all other auantities being identical
cC(M7,d9,t) . ‘ _
on ‘both sides of the ecquation. Note that we are not
equating the two ~operators. only establishing a
correspondence.i.e. to every Qperator:bélohqinq to the set
(g/B)S, there exists @ corresponding operator (g/C)Sl’which

~acting on the same set of states vyields the same function

gM2.¢.t).

Since the cross sections B(Mz.s,t) and C(Mz,s,t) are

single wvalued functions of Mz. s and t, and since for a

given Mz. one can only construct one S and one Sl.there

exist, for an arbitrarvy function g. neighbourhoods in Mz.s,t
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space where the correspondence is a one~to-one
correspondencex. Fiqyre 2 shows the correspondence for 3
neighbouring points in Mz,s,t space with the same M2 and s.
The operators shown are discrete .For strict rigquf, one can
normalize all the states in a box in space-time to obtain

denumerable. discrete states and let the dimensions of the

box become large.

We may write the local isomorphism symbolically as

g(12,s,t)s am?,s,t)s,
2 _ .
B(M ps't)' C(M vS-t)

(4)

For the present, we defer considering the family of lines in

\
m2,s.t space along which_ . either (q*B)SAor (Q/C)Sl_rémain

constant, Correspondence (4) holds tr#e for a wide class of
. _ . . oy .

arbitrary functions g(Mz.s,t). We assume that B(M®,s.t) is

|
|

a well~ehough behaved function to be}ong. to that class.
This implies

B(Mz,s.t)S1

C(M2,s,t)

(5)

2

Since S and S; are functions of M only, this can only be

true> if the ratio B(Mz,s,t)/C(M2.s,£) is a function of M2
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only and not of’ s and t. Otherwise for each S. there will
correspond an infinitg number of overators in contradiction
to 5. OED. Note once again that at no voint in the proof
have we ecuated the elements of one set of operators with

the elements of any other. (see Figure 2.)

B(Mz,s,t)

Therefore  ———— = B(MZ) (6)
C(M",s.,.b)

Equation (6) implies that the family of 1lines in Mz,s,t

space along which (g/B)S remains constant is the same family
‘along which (g/C)S1 remailns constant, Thus - (6) implies a
6ne-to~one correspondence throughout the“MZ,s,t space. We
note 1in mwassing that equation 6 is equivalenf to
facﬁorization of fhe‘ threé 5ody scatﬁerinq pDrocess iﬁto‘a
formatioﬁ vertex and a decay vertex—és shown in Fiquré‘l(b).
Following.Mueller,3 one mav now continue t to the region for
the process a+b , C+X. This 1is permissible, 1if the
vampiitude possesses analyticity'and>crossihg'éyﬁmetry. - This
yields the relation
f(ab+5+xs)

L%y o1/, m%) (7

£ (ab,c+X)

, ghere f denotes the invariant inclusive cross-section
d .
g » . - _ , o S S
E—j3 . One can continue both s and ‘u (the sub-energy of
dp : '
"the combination ac) to yield
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f(ab*c+xs? f(ac*b+xs) ) ﬁ(bc*a+xs) N a(Mz)
£ (ab+Cc+X) f (ac+b+X) f (bc*a+X)

]
I

(8)

This implies that the three crossed channels are governed by
the same function ¢, which depends only on M2 and the subset
chosen. In particular, at any fixed Mz, the_t distributions
of the subset and the whole set mqst have exactly the same
shape; - conversely at wvarious t intervals the ratios of the
M2 distributions of the subset to the set should be the same
function e, of MZ, irrespective of the t interval. The
relations'B-are easily vérifiable by exveriment.

ISt Lemma:~ The mean recoiling multiplicity <nX> defined as
Znifi/f,( where f denotes the inclusive cross section for
the process ab *> C+X  and £, denotes the semi-inclusive
cross section for the process ab ~*c +ni chargéd particles),
is indepéndent of s and t and is only a function of Mz.
Fof'”. _

<n.> = I nifi/f = I niai(Mz) = function of Mz (9)

Keeping M2 fixed, one may integrate over t to yield the well

‘known experimental result 4 that the mean recoiling

multiplicity (integrated over t) is a function of M2 only
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and not of s. The same function . again governs the three

crossed channels.

an Lemma:—~ We may now employ a similar appnroach towards the
reactions Pp » ;74X and PP - ﬂi+xs. Let B, denote
f(pp = n++X) and C1 denote f(op - ﬂ++xs)r and B2 and C2

denote f(pp + 7 +Y) and f{pp - ﬂ°+YS) respectively. Then

we obtain the operator correspondences,

B 2
'8 zz |X>LKX| - Ei - I X ><X | = (M8, (18)-

it

S =z |Y><Y| gz =D YKy | g'(Mz)sl’ (11)
2

Note now that the operator S contains all the charae

conjugate states of S° and that S, contains all the charge

1

conjugate states of Sl'. Hence by charge svymmetry it
follows that B(MZ) = B'(Mz). |

c,m?,s.6) Lo mf sty B
i.e. S i E— = oM7) (12)

Bl(M ¢S, t) B2(M .s,t)

Cl--C2 Bl~82 _

This leads to —— = . & relation arrived

c,+C, B, +B , s
at heuristicall% before for ann%hilations. Here we prove it

for the general case where XS is anv suvbset of X. The

—ba

result 1is dgeneralisable to any initial state(e.g.pp) that
is charage conjugate with ‘itself. We emphasise that the
variable t is defined for ' and . analogously, as the

momentum transfer souared from the taraget proton. Thus
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ecuation (l12) 1is in addition to the ‘usual charge symmetry
relations Ci(MZ.s.t) = C2(M2.sxu) and

2

Bl(Mz,s,t) = Bz(M rS+u) which arise from reflection symmetry

in the center of mass .
3rd Lemma:~ The second lemma is easily generalisable to

processes of the type ab * c¢+X and de * f+Y where the set

abc is the symmetry conjugate of the set def. If in
addition, de is the symmetry conjugate of ab, the
predictions can be tested in the same exper iment.

Otherwise, two separate experiments are recguired. As an
example, consider the symmetry overation ‘under which the
third component of isospin is reflected. Let the two
reactions ‘under consideration be np * rY+x  and np + T PY,
Under the reflection of the.third component of isospin, n*p
and 7 ten” and vice versa. One would therefore, expect
equation (12) to hold for the charged pion spectra for no
ihferaétions, the cuantities being defined analogously., and
the same experiment can be ‘used to test their validity.

4thLemma:- Under the assumption that the analvtically
continued n body scattering amplitude vyields the cross
section for the process ab * n-2 particles +X. we get the
generalisation of equation 7 for multivarticle inclusive
reactions., i.e. the ratio of the <c¢ross section for any
subset to the whole 1is a function of M2 onlv and not of

other ‘kinematical wvariables and that the same function



Paage

applies to all the crossed channels associated with it.

By lemma 1, the three crossed channels §§ + 1 +X,
o » ptx, and «+'> » p+X have the same mean recoiling
multiplicity £for any given Mz. Frqm egquation (12},
5p > u++X and pPp + 7 +X have the same ai(MZ), where 1 is
the multiplicity of the recoiling systen. Therefore, the
three crossed channels Pp » 1 +X, 1 p » D+X and = p » DP+X
have the same mean recoiling multiplicity distribution as
the three mentioned before. Also, the annihilation
component in pp interactions is difficult to measure at
high energies. However, one can determine o for
annihilations from low energy data. extrapolate it to higher

2

values of M and using -equation 7, work out the full

inclusive pion spectra from annihilations at high energy!

From Figure 1l(b), one can deduce that the function ai(Mz)
is the probability of the intermediate state to decay into i

charged particles. Consider the channel ©pp » pP+X. The

overall distribution éfz for this channel peaks at low Mz
dam

values near the threshold, this being attributed to

diffraction dissociation. From eguation (7). qu)
2.4 . do an” 1
= “i~l(M )_‘2) . Since -5 reaks at low M
Drongs dM” overall am
values, we would expect the wain contribution to come from

2

subsets for which a(Mz) is large at low M2 valves. But this
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is so for low values of the recoiling multiplicitv. ‘Hence

we would expect the diffractive peak to occur predominantly

for low primary multivlicities. another expverimentally
y
observed fact. Conversely. éﬁz for channels such as
dM

pp + 7 +%X. which peaks at high M“ values. would be more

evenly shared ‘between the multiplicities.

To conclude, our main results are

(1) we have proved, from vervy general éssumptions, that the ratio of
the invariant inclusive cross section at any point in phase space to
the invariant semi-inclusive cross section (where semi~inclusive
denotes any subset of the recoiling system) is a function of Mz onlv.
(2) For a given Mz. the ratio obtained from one channel should edual
the ratio obtained from the two other cross channels. i.e there
existska single function m(Mz) that governs the three channels
. connected byvcrossing.

(3) The ﬁean recoiling multiplicity is a function of M2 only and not
of s or t.

(4) Applying the theorem to bpp .we obtain results arrived at
heuristically .before. |

(S)The‘theorem is generalisable to multiparticle inclusive reactions.
(6)Theitheorem'is applicable to a wide class of interactions, strong,
electromagnetic and pverhaps weak.

(7)1t has not escaped the author ‘s notice that the relations proved

here severely restrict the possible shapes of particle spectra perhaps

to the point of excluding all others exceont the observed ones,



Page 11

REFERENCES

L .
This is known in pure mathematics as an isomorphism

between the two sets of operators.

2

Note that application of this apporoach to two beody
scattering leads to the obvious and trivial result that
the ratio of the <cross section of a subset to tﬁe total
éross section should be a function of s only.

: A.H.Mueller, Phys. Rev. D2. 2963 (19748).
}J.Whitmore Physics Reports 18C (1974) 273.

S

R.Raja. FNAL Pub 76/99 , submitted to Phys. Rev. Lett.



Ns_,

‘UO1}BZ1J0}08] SUIPBIISNIIL Suraoyyeos Apoq ¢ Joj wexderq ‘(q)j Sid

‘udoA1S oJ® SO[QEIIBA JOYJO 9Y} 90UO Pauluiidlap ST ‘N
‘UOTIRUIqUIOD PJIY} oy} Jo ASaisueqns 8yJ, ‘UMOUS SUOI}BUIqUIOD d1d1}ied 89U} JO
so18aouaqgns oy} ajousp 1 pue s ‘Surzepeos Lpog-¢ Joj weadep oyl ‘(e)y "Sld

(q)
kpdeQ EVTLEELE

Vo /




MZS FIXED

t,, 1,15 are arbitrarily close to each other
_ g{M3s, 1)

= SM:5 1 e,
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Fig. 2. Diagram showing local isomorphism between discrete operators
in MZ, s,t space. The operators are diagonal. Only non-zero elements
are in general shown. As M2 changes, the non-zero diagonal elements
move along the diagonal. The figure shows the isomorphism for fixed
M , S. One can repeat the argument for fixed M~, t.



